
International Journal of Theoretical Physics, Vol. 4, No. 4 (1971), pp. 295-303 

Reference Systems and Gravitation 

HANS-JI ]RGEN TREDER and 

HORST-HEINO V. BORZESZKOWSKI 

Zentralinstitut f~r Astrophysik, Deutsche Akademie der Wissensehaften zu Berlin 

Received: 30 March 1971 

Abstract 

It is shown how the formalism of the tetrad theory of gravitation used by Treder (1967a, b, 
1970) follows from the more general fibre bundle formalism. This is of interest in the 
study of the relations between tetrad theories and the general theory of relativity. In 
particular, the breaking of the principle of general relativity and the interpretation of 
tetrad fields as reference systems are considered in greater detail. 

1. Introduction 

The tetrad theory of gravitation proposed by Treder (1967a, b) uses 
differential equations for quantities hai which are vectors with respect to 
coordinate transformations in the space-time V4, and which can also be 
considered as vectors with respect to local Lorentz rotations in the tangent 
spaces rx(V4) of V4. It is useful to see how this formalism developed by 
Treder (1967a, b, 1970) follows from the more general fibre bundle form- 
alism by making largely physical assumptions (compare Section 2). Firstly, 
this enables us to use theorems of the theory of fibre bundles, a fact that is 
especially interesting for global investigations which so far have not been 
done. Secondly, it proves to be useful for the consideration of the principle 
of general relativity. We consider this latter aspect for tensorial and 
spinorial fields in connection with the problem of  physical reference 
systems in Section 3 and 4. 

2. Fibre Bundle Formalism and Tetrad Theory of  Gravitation 

In order to study the tetrad theory of gravitation, we consider the 
principal fibre bundle ~ of reference systems of  the Riemann space-time 
V4.t This bundle ~ may be defined by the equivalence class of the following 

t See for instance: Steenrod (1951) and Auslander & Mackenzie (1963). 
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principal coordinate bundles: 

= (P(V4) , V4, Gl(4), (U~, r 

where V4 is the base manifold, P(V4) is the union of all Px (Px denotes the 
set of all reference systems at the point x, i.e. the set of all ordered bases 
Xl, . . . ,  X4 of the tangent space r~(V4)), Gl(4) is the general four-dimensional 
linear group, {U~} is any covering of V4 by coordinate neighbourhoods,'~ 
and 6 ~  is the transformation of the fibre Gl(4) induced by the coordinate 
transformation 2 ~ = 2~(x k) on U~ fl Ut3; q~O is an element of G/(4). 

An element of the equivalence class of principal coordinate bundles 
representing the principal fibre bundle ~ may be constructed by choosing 
a basis X1 . . . . .  X4 at each point x of  a coordinate neighbourhood U~. In 
this way we obtain a representation of each vector Y~ of any reference 
system by matrices ha~: 

Y~ =ha i  XA (2.1a) 

This relation defines the map 

7r-~(U=) --> Us x G/(4) (2.1b) 

because hal E Gl(4). (~r is the projection of P(V4) onto the base manifold 
v4.) 

The transformation r of the fibre G/(4), that is the transformation of the 
matrices hA~ associated with the coordinate transformation 2~ = 2~(x k) on 
U~, f) U/3, depends on the selection of the principal coordinate bundle; 
that is, it depends on the choice of the vectors XA. Suppose we choose the 
basis 

0 
XA = X, = 0X ~ (2.2) 

Then 
0~'r t 

h~' = Ux, h ,  (2.3) 

In this case, the group of the transformations ~ is reduced to the group 
of holonomic transformations. 

From the physical standpoint of the tetrad theory of gravitation it now 
follows that we have to consider principal fibre bundles whose group can 
be reduced to the identity: It is the central idea of the tetrad theory of 
gravitation to regard a tetrad field Y1,.-., Y4 as the mathematical descrip- 
tion of the gravitation, where the inner product of the vectors Yi (on the 
tangent space rx(V4)) 

gir = <Y~, Yk> = 7lAB hA~ hBk (2.4) 

Yl  = hal Xa (2.5) 

t In the tetrad theory of gravitation we are dealing with manifolds covered by only 
one coordinate neighbourhood. But, for reasons of a convenient description of coordinate 
transformations in fibre bundle theory we write { V~}. 
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provides the metric gik of the space-time V4. We see from this that the small 
Latin indices, running from 1 to 4, become tensor indices with respect to 
coordinate transformations 2 ~ = 2~(x k); but, in general, they are numbers 
under any transformations in the tangent spaces "rx(V4).t Compared to it, 
the Latin capitals of hAi a r e  tensor indices under any linear base trans- 
formations in the tangent spaces ~'x(V4); its behaviour under coordinate 
transformations 2~ = 2~(x k) on Us N U~ c V4 given by ~ 9  depends on the 
choice of the principal coordinate bundle representing the principal fibre 
bundle. If there is a principal coordinate bundle belonging to the equivalence 
class of the principal fibre bundle such that its group is the identity, then 
the Latin capitals are not indices, but numbers under coordinate trans- 
formations. (In this case one can say that the group of the bundle can be 
reduced to the identity.) 

Since the gravitational field is to be described by four linearly independent 
vector fields, one has, from the first, to consider manifolds V4 which allow 
the global existence of such vector fields. Now, it is known from the dif- 
ferential geometry that, in the case of a differentiable n-dimensional base 
manifold, the group of its principal fibre bundle can be reduced to the 
identity if and only if the base manifold has n linearly-independent vector 
fields.:~ That is, the group o f ~  considered in the tetrad theory of gravitation 
is reducible to the identity. Therefore, there are principal coordinate 
bundles such that the capital indices of hA~ are numbers with respect to 
coordinate transformations in V4. 

Now, in tetrad theory of gravitation one does not consider the complete 
principal fibre bundle, but only that subclass of principal coordinate 
bundles whose group is equal to the identity (in particular, one does not 
consider principal coordinate bundles with (2.2) and (2.3)). 

It is clear from relation (2.4) that the elements of the subclass of principal 
coordinate bundles considered arise from each other by x-dependent 
Lorentz transformations of the bases XI,. . . ,  X4 (the bases fix the single 
principal coordinate bundles): 

x~ = o~AB(X ') XB, ,oAC(X i) o~%(X9 = ~ "  (2.6) 

This statement is another formulation of the principle of general relativity 
given by Treder (1970) and Treder & Liebscher (1970). 

In this way the mathematical formalism used by Treder (1967a, b, 1970) 
follows from the more general fibre bundle formalism. The concept 
developed by Treder (1967a, b, 1970) starts by defining matrices hAi, 
where the capital indices are tensor indices under Lorentz transformations 
and numbers in the Riemann space-time //'4, and where the small indices 
are numbers under Lorentz transformations and tensor indices in V4, 

+ We write 'in general' because, naturally, coordinate transformations can also be 
interpreted in the tangent spaces ~-~ of V4. 

.~ See for example, Auslander & MacKenzie (1963), p. 179. 
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i.e. with respect to coordinate transformations in I/4 . These hat give the 
metric 

gt, = TAB hal hBk 

3. The Principle of  General Relativity in Tetrad Theories 

In the tetrad theory of gravitation the gravitational field is described by 
four vectors Yt which obey the relation by Treder & Liebscher (1970). 
Thus one has to formulate field equations determining the vectors Y~. If 
one formulates equations for the components hat which represent the 
vectors Yi with respect to the basis Xa, then in order to determine the Y~, 
one has also to fix the basis XA. According to the principle of general 
relativity, this basis is only fixed up to local Lorentz transformations.t 

The determination of the basis XA leads to a violation of the principle 
of general relativity and enables a physical interpretation of the quantities 
hat fixed by the field equations. In the fibre bundle language, the violation 
of the principle of general relativity means the selection of a special principal 
coordinate bundle. 

This necessary determination of the basis XA follows automatically from 
the physical starting-point of the tetrad theory of gravitation developed by 
Einstein and Abraham in 1912 (Treder, 1971). According to this point of 
view, the nature of gravitation insists on the necessary transition from 
inertial to non-inertial reference systems, where, in general, the non-inertial 
reference systems cannot be embedded in a fiat space-time. Therefore it 
follows from 

Yi = hAt Xa = 3Bi ff2B A X A  (3.1) 

that the vectors XA are identical with the inertial reference systems in 
Minkowski space and the field equations determine the non-holonomic and 
non-Lorentz transformations hat and DaB, respectively, transforming the 
inertial reference systems into the non-inertial reference systems which are 
associated with a gravitational field. For vanishing gravitation the following 
relation then holds: 

Y = ~at XA (3.2) 

Therefore the description of gravitational fields by four-vectors 
Y~ = hA~XA leads to a violation of the principle of  general relativity, 
because in order to formulate field equations for the quantities hat, the 
determination of the basis Xa is necessary; in other words, one has to 
select a principal coordinate bundle. In the tetrad theory of gravitation this 
problem is solved by the 'initial-value condition' for vanishing gravitational 

t The choice of the coordinate system defines the basis corresponding to the small 
indices, but not the basis corresponding to the capital indices. Naturally, it is not necessary 
to determine the basis Xa or the corresponding basis in the two-dimensional complex 
spinor spaces, as long as only tensorial quantities are considered (compare Section 4). 
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fields. From this condition it follows that the basis Xa is identical with the 
reference systems of the special theory of relativity. 

4. Reference Systems and Measurable Values 

In Section 2 and 3 we preferred the viewpoint that the matrices hAt(x ~) 
are components of four-vector fields Yt(x ~) with respect to any, in general, 
non-integrable vector fields XA(X r) on V4. That is, we considered them as 
vectors with respect to local Lorentz rotations. But because the capital 
indices are numbers in 114, the functions hAt(x ~) are also components of 
four-vector fields with respect to the bases e t in V4, which are reciprocal 
to a/Ox t. That is, any field equations for hat determine four-vector fields 
in 114. Thus, for tensorial quantities we need not refer to any bases Xa in 
the tangent spaces ~'x(V4). In the following this is discussed. We shall also 
show how these vector fields hat can be interpreted as reference systems for 
tensorial quantities. 

Let 114 be covered by a coordinate system {xZ}, and let h'At be four 
linearly independent vector fields. After Schmidt's method one can construct 
four vector fields hat from these h*Ai such that 

hAi  hBr 9~AB = h a l  h a t  : g i r  (4.1 a) 

and 
htA h k B g t r  = h t a  htB = 7]A B (4.1b) 

(The Minkowski metric ~/aB is the metric of the tangent space rx at each 
point x). Now, it is known that also each linear combination hai 

hat = OJaB hBt (4.2) 

is pseudo-orthonormal if ogaB(X t) obeys the relation 

(.DAB OOC B = O')B "40)Bc = S A c  (4.3a) 

where 
(.DAB : 7~ AC 9~B D r D (4.3b) 

Indeed, using (4.2) and (4.3a, b) one gets 

hat hnk ~1AB = rl aB O~Ac OJnD hCt hDk = g t, (4.4a) 

and 
hta hrB gt~ = wa c OJB D htc hro gi~ = ~laB (4.4b) 

According to Section 2, the transformation (4.2) of hat associated with 
the transformation (2.6) of the basis Xa can be considered as Lorentz 
rotation with the coefficients ~OAB in the tangent spaces rx(V4). For tensor 
fields and its equations of motion (field equations), however, this dual 
formulation is formal. Here purely space-time operations are sufficient. 
In particular, the operation (4.2) can be considered as construction of four 
new space-time vectors without reference to any abstract rotations in the 
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flat tangent spaces ~'x(V4). But this does not hold for genuine spinor fields, 
since these entities are just defined as representations of the Lorentz 
rotations in ~-x, more exactly, as representations of the corresponding 
unirnodular transformations. 

The fact that purely space-time constructions are not sufficient to define 
and to interpret spinors, indicates that spinors are not measurable quantities. 
Therefore, referring only to directly measurable, i.e. tensorial quantities 
and, accordingly, considering the hAt as space-time vectors, the formulation 
of field equations for the hat means a breaking of the principle of general 
relativity. 

A tetrad hAt may be considered as mathematical description of three 
standard rods and one standard clock. A measurement of a vector A t, for 
instance, consists then in a projection of A t upon the tetrad system hAt 
giving the scalars h",A*; these scalars are the measurable values of A t. 
Four arbitrary space-time scalars A B represent the measurable values 
hB, A ~ of a space-time vector if and only if they are defined so that the 
choice of a new linear combination (4.2) as reference system is associated 
with the transition A B into -4 B, where 

~ c  = ~OCB A B (4.5) 

That is, four scalars A B represent the measurable values hBiA ~ of a space- 
time vector A i if and only if they are Lorentz vectors with respect to the 
Lorentz transformations (4.2). 

In accordance with the expectation noted above, that genuine spinors 
are no measurable quantities, we find that an analogous interpretation 
for spinors is impossible. The spinors are, from the first, scalars with 
respect to coordinate transformations in V4. But these scalars are not 
measurable values, because they cannot be considered as the result of a 
measurement, i.e. as a projection upon measuring scales. 

For as long as we consider only a flat Minkowski manifold E4 and choose 
pseudo-Cartesian coordinates {x z} the metric has the form 

g*, = ~hk (4.6) 

Then the general orthonormal Schmidt tetrad takes the form 

hA, = OOAB 3B, (4.7a) 

Using the matrix oJ-*aB = OB a, one can construct the linear combinations 

~ai = 3al = OJB A OJ'C 3Cl (4.7b) 

the hat are the inertial reference systems. In general coordinates ~r = ~r(x~ ) 
the tetrads (4.7a) and (4.7b) have the form 

h , ai = q~k, i toAB 3Br = OOAB ~ OB, r (4.8a) 

and 
h'A~ = ~ ~ i (4.8b) 
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In Riemann manifolds V4 global inertial reference systems do not exist. 
Therefore, the construction of the Schmidt tetrad (4.7a) is possible only in 
an infinitesimal region (the construction of a local geodetic reference 
system, for instance, at x = 0). 

Let us consider now the reference system that describes the proper rest 
system of a laboratory L, and let us compare it with reference systems fixed 
by any field equations. 

Let ~ :  x *= x~(s) be the world-line of L and ,~A the reference tetrads 
representing the proper rest system of L along the world-line ~r 

~lAi  __ 1 2 - {us, N~, Ni ,  N~} (4.9) 

where u ~ = dx~/ds is the tangent vector to ~o and N~, N 2, N 3 are the three 
normal vectors. The proper rest systems/r~ at the points x ~  of -~r are 
carried into each other by the Fermi-Walker displacement: 

[tai;t u t - ,~Ar(ui ur;l u I - u k ui;t u t) = 0 (4.10) 

where u~.tu t =  b N l  ~. This displacement leaves the projection XB= h B A t  
of any vector A t upon the tetrad ~A invariant, i.e., if both the tetrads has 
and all vectors (and also tensors of higher rank) are carried by this Fermi- 
Walker displacement along ~ ,  then the measurable values XB = ~ B A Z  
remain unchanged. Thus this Fermi-Walker displacement along ~ is equal 
to the Einstein teleparallelism using the ~A as reference tetrads. We have 
the relations 

~B ~fB,, u' = (A~s + A r ~ s  ~r, , )  u' 

= [Ai;l -- A , ( u  i u";z - UkU~;l)] U t = 0 (4.11) 

where h~ahAk, ~ is the Einstein connexion A~r~. 
From the relation (4.10) it is clear that if the curve is a geodesic, the 

Fermi-Walker displacement (4.10) goes over into the free Levi-Civita 
displacement. Then the motion of the laboratory L is a free one, and the 
/IA~ are a generalisation of the inertial tetrads ~a  in the sense of special 
relativity. We have then 

hAl;z u l = 0, ui;l u r = 0 (4.12) 

Hence we get, instead of (4.11), 

= Ai;z u I = 0 (4.13) 

Therefore, with regard to the tetrad system ha~ = ~as, the free Levi-Civita 
displacement and Einstein's teleparallelism are the same along Xr 

If  we introduce Fermi coordinates along oW such that we have 

(gs,)~ = O, (g,,,,).~ = 0 (4.14) 
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along .Z ~, then we get for the orthonormal tetrad field along .W 

(ha i )  w = m a  B ~B i (4.15a) 

The linear combination 
~A i : O.)B a OJBc ~C i (4.15b) 

gives then the tetrads ~at. 
In general, the adaption of the tetrads ha t  to the proper rest systems of 

any laboratory L is excluded when, additional to the field equations 
following from (4.1 a, b), equations for the hA~ are formulated. In particular, 
we find this situation when the sixteen ha t  are determined by means of 
sixteen differential equations (plus initial- and boundary-conditions). 
Then the physically privileged reference tetrads hat(x t) are solutions of 
these sixteen differential equations and the metric is given by the ortho- 
normalisation condition (4.1 a, b): 

gtr = TAB ha/hBr (4.16) 

Using these vector fields hat, we can define the measurable values 

A B = hVt A t etc. (4.17a) 

on the whole manifold 114. The values (4.17a) remain unchanged when the 
vector A t is carried by the Einstein displacement 

At, t = -A t~z A r = - h  f,~ h a ,  t A~ (4.17b) 

In general, the hat are different from the ha~ along .W, because the dis- 
placement (4.17b), in general, is not Fermi-Walker displacement along s162 
We have 

hat = oJaBhai (4.18a) 

In particular, if *L~ a is a geodesic we get, along ~ ,  

AB.t u ~ = hBm A t u t = t O n c ,  z ~ C  u r (4.18b) 

Starting from the fact that only tensorial quantities are measurable, the 
determination of the privileged reference tetrads hat follows from the 
simultaneous satisfaction of the equations describing the interaction 
between gravitation and matter: 

16 field equations for the hat containing Ta n (4.19a) 

h a t hB k TaB = gtr (4.19b) 

Tt ' ;k  = 0 (4.19C) 

That is, for the reference tetrads hat we have to demand: the measurable 
values 

TA B = ha t hBkT i  k (4.20) 

of the matter tensor Tt k have to determine, by means of (4.19a) and (4.19b), 
that metric gtk that appears in (4.19c). 
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For instance, let us consider a physical system which is described by the 
matter tensor Ti k and let us assume that this system is both transmitter 
and receiver of gravitational radiation. If  no other gravitational fields 
exist, then (4.19a) determines the gravitational waves, and (4.19c)describes 
the interaction between gravitational waves and the system under con- 
sideration. Then the reference tetrads are given by those hai, for which the 
measurable values (4.20) determine, by means of (4.19a) and (4.19b), 
that tensor gik that gives the reaction (4.19c) of the gravitational radiation 
on the physical system. 
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